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Abstract

Large single-cell ribonucleic acid-sequencing (scRNA-seq) datasets offer unprecedented biological insights but present substantial
computational challenges for visualization and analysis. While existing subsampling methods can enhance efficiency, they may not
ensure optimal performance in downstream machine learning and deep learning (ML/DL) tasks. Here, we introduce scValue, a novel
approach that ranks individual cells by ‘data value’ using out-of-bag estimates from a random forest model. scValue prioritizes high-
value cells and allocates greater representation to cell types with higher variability in data value, effectively preserving key biological
signals within subsamples. We benchmarked scValue on automatic cell-type annotation tasks across four large datasets, paired with
distinct ML/DL models. Our method consistently outperformed existing subsampling methods, closely matching full-data performance
across all annotation tasks. In three additional case studies—label transfer learning, cross-study label harmonization, and bulk RNA-seq
deconvolution—scValue more effectively preserved T-cell annotations across human gut-colon datasets, more accurately reproduced
T-cell subtype relationships in a human spleen dataset, and constructed a more reliable single-cell immune reference for cell-type
deconvolution in simulated bulk tissue samples. Finally, using 16 public datasets ranging from tens of thousands to millions of cells,
we evaluated subsampling quality based on computational time, Gini coefficient, and Hausdorff distance. scValue demonstrated fast
execution, well-balanced cell-type representation, and distributional properties akin to uniform sampling. Overall, scValue provides
a robust and scalable solution for subsampling large scRNA-seq data in ML/DL workflows. It is available as an open-source Python
package installable via pip, with source code at https://github.com/LHBCB/scvalue.
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Introduction
Large-scale single-cell transcriptomic atlases, such as those from
the Human Cell Atlas [1], CELLxGENE [2], SCAR [3], and SCAN [4],
serve as valuable resources for smaller-scale studies [5]. However,
visualizing and analysing these extensive datasets can present
significant computational and memory challenges. To address
this, researchers can create representative subsets, commonly
referred to as ‘sketches’ that enable the extraction of meaningful
insights in a more efficient and cost-effective manner [6].

Several sketching methods have been developed to date.
The simplest, uniform subsampling is implemented in popular
pipelines such as Seurat [7] and Scanpy [8] pipelines, but it
may not capture the full transcriptional diversity of a dataset.
To overcome this limitation, GeoSketch [6] partitions gene
expression space into equal-sized, non-overlapping boxes and
selects representative cells from each. Meanwhile, Sphetcher [9]
covers cells by small-radius spheres that can better preserve the

transcriptomic landscape. Both methods enable more evenly
distributed sampling across diverse cell types. Hopper [10]
provides theoretical guarantees for maintaining dataset structure,
while its partition-based variant, TreeHopper, accelerates the
sketching process without considerably compromising quality.

GeoSketch, Sphetcher, and (Tree)Hopper all utilize a minimax
distance design [11], minimizing the Hausdorff distance, i.e. the
maximum distance between any point in the original dataset and
the nearest point in the sketch. In contrast, scSampler [12] adopts
a maximin distance design [11], maximizing an inverse distance
measure to ensure greater distinctiveness among selected cells.
Finally, Kernel Herding (KH) constructs a ‘stand-in’ sketch [13] that
focuses on preserving the original cell type distribution, rather
than optimizing distance metrics.

Machine learning and deep learning (ML/DL) techniques
are becoming increasingly essential in single-cell analysis [14].
However, relatively few empirical studies have evaluated how
sketching methods perform in downstream learning tasks.
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Table 1. Summary of the 16 scRNA-seq datasets used in this study

Dataset # of cells # of cell types Tissue Species Literature Usage

PBMC 31,021 10 Blood Homo sapiens PMID31500660 CTA; SMC
mBrain 56,399 10 Various cerebral regions Mus musculus PMID34462589 CTA; SMC
CxG_min 65,536 164 Cross-tissue H. sapiens PMID39098889 CTA; SMC
mTC 89,429 4 Embryo M. musculus PMID38355799 Demo; SMC
cMTG 112,929 18 Middle temporal gyrus Pan troglodytes PMID37824638 SMC
PAC 139,054 18 Primary auditory cortex H. sapiens PMID37824655 SMC
gMTG 139,945 18 Middle temporal gyrus Gorilla PMID37824638 SMC
Liver 167,598 14 Liver H. sapiens PMID35021063 SMC
GSCL 191,230 9 Gonad H. sapiens PMID35794482 SMC
Spleen 200,664 102 Spleen H. sapiens PMID35549406 H; SMC
T&ILC 216,611 16 Cross-tissue H. sapiens PMID35549406 Deconv; SMC
mACA 356,213 197 Cross-tissue M. musculus PMID32669714 CTA; SMC
Gut 428,469 134 Gut H. sapiens PMID34497389 LT; SMC
mCNS 2,106,206 15 Embryo M. musculus PMID38355799 SMC
mEmbryo 3,267,338 5 Embryo M. musculus PMID38355799 SMC
Fetal 4,062,980 72 Cross-tissue H. sapiens PMID33184181 SMC

Each dataset was utilized in one or more of the following experiments: demonstration (Demo), ML/DL-based CTA, LT learning, cell-type harmonization (H),
deconvolution (Deconv), and/or SMC, assessed by computation time, Gini coefficient, and Hausdorff distance.

Moreover, assessing the ability of different methods to capture
rare cell types—quantified by the Gini coefficient—is a critical
consideration [12]. In this study, we introduce scValue, a subsam-
pling method that creates sketches of single-cell ribonucleic acid
sequencing (scRNA-seq) datasets by assigning a value to each
cell. Cells with higher value (i.e. those more informative for cell-
type identification) are more likely to be included in the sketch,
whereas lower-value cells are less likely to be selected. Experi-
mental results indicate that scValue consistently outperforms
existing sketching approaches in ML/DL tasks, yielding more
balanced cell-type proportions and exhibiting superior scalability
as dataset sizes expand from tens of thousands to millions of
cells.

Materials and methods
Large multi-species cross-tissue single-cell
ribonucleic acid-sequencing datasets
As summarized in Table 1, this study includes 16 large-scale
scRNA-seq datasets containing between 31 thousand and four
million cells, spanning four to 197 cell types and covering samples
from more than 10 tissues across four species. Each dataset was
utilized in one or more of the following experiments: demon-
stration (Demo), ML/DL-based cell-type annotation (CTA), label
transfer (LT) learning, cell-type harmonization (H), deconvolution
(Deconv), and/or sketch metric comparison (SMC), which evalu-
ated computation time, Gini coefficient, and Hausdorff distance.

Specifically, the mouse T cell (mTC) dataset was used to illus-
trate how well each sketching method’s subsample reflects the
structure of the full dataset (Demo). Four datasets were used for
CTA: human peripheral blood mononuclear cells (PBMC), mouse
brain (mBrain), CELLxGENE minimal (CxG_min), and the mouse
Aging Cell Atlas (mACA). The Gut, Spleen, and T&ILC datasets
were used for LT, H, and Deconv, respectively. All 16 datasets were
included in the SMC analysis.

Six of the datasets (those used for CTA, LT, and H) were obtained
from sources cited in their respective publications, while the
remaining 10 were obtained from CELLxGENE (https://cellxgene.
cziscience.com/datasets) [2]. PBMC was originally downloaded in
Matrix Market format, comprising four separate files for barcodes,
genes, expression values, and metadata; CxG_min was provided

in Apache Parquet format; and the remaining 14 datasets were in
HDF5 AnnData (h5ad) format.

All datasets underwent standard quality control either by
the original authors or by CELLxGENE. Subsequently, we stored
and processed all datasets in AnnData format using the Scanpy
pipeline [8]. In the experiments, each of the 16 scRNA-seq datasets
was normalized using a scale factor of 10 000 and log-transformed
(unless already log-normalized in the original files). The top 3000
highly variable genes (HVGs) were selected unless HVGs were
already provided or a different count was specified in the original
publications. Lastly, the top 50 principal components (PCs) were
computed from these HVGs and used as input for the subsampling
methods.

Overview of scValue
scValue is designed to generate an informative sketch (represen-
tative subsample) of large scRNA-seq datasets while preserving
critical biological diversity. As illustrated in Fig. 1a, scValue differs
from conventional uniform or distance/distribution optimization-
based methods. It first trains a random forest classifier to assign
a ‘data value’ to each cell, reflecting its importance in distin-
guishing cell types. These data values then guide subsampling
at the cell-type level: a value-weighted allocation determines
the target sketch size for each cell type, ensuring that rare but
informative cell types are adequately represented; cells with the
highest values are selected using a default binning procedure,
producing a smaller dataset that retains the most biologically
vital cells.

Data value computation
For a large scRNA-seq dataset containing expression profiles for
N cells and M cell types, we denote the input feature matrix
X ∈ R

N×d and the input label vector Y ∈ {1, 2, ..., M}N, respectively.
By default—and consistent with other sketching methods—d is
set as the top number of PCs calculated from log-normalized
gene counts. Figure 1a depicts the schematic workflow of scValue,
which uses these inputs to create a value-based sketch consisting
of S cells.

A random forest model [15] comprising B decision trees is fitted
with (X, Y). The b-th tree, denoted by fb, is trained on a bootstrap
sample drawn with replacement from (X, Y). Cell i is considered
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Figure 1. Overview of scValue and experiments. (a) Given a large scRNA-seq dataset, scValue generates an informative sketch (representative subsample)
through three steps: first, a random forest classifier is trained on the full dataset using cell-type labels, and out-of-bag (OOB) estimates are computed
as data values for individual cells; second, the sketch size for each cell type is determined, allocating greater representation to cell types with higher
value variability; third, the value range is divided into equally sized bins, from which top-valued cells are selected to form the final subsample. (b)
An mTC dataset illustrates scValue’s ability to balance cell-type proportions and enhance cell-type separation, compared to six existing subsampling
methods. (c) We systematically evaluated scValue against six counterparts through: four CTA tasks, each involving a previously studied pair of large
scRNA-seq dataset and ML/DL model; a case study of LT learning across human gut-colon datasets via CellTypist; a second case study of cross-study
label harmonization via CellHint using a human spleen dataset; and a third case study of psuedobulk RNA-seq deconvolution via MuSiC using a human
T&ILC dataset.

out-of-bag (OOB) if it is not selected in the b-th bootstrap, which
we denote by i ∈ OOBb. Using only OOB trees to predict for cell i
and averaging the prediction errors yield the cell’s OOB estimate.
This OOB statistic is traditionally used to evaluate random forest
performance [16] and has recently been adapted for data valua-
tion in machine learning tasks [17]. In our study, each cell’s data
value (vi ∈ [0, 1]) is computed as the OOB accuracy of cell type
prediction

vi =
∑B

b Tb(i) · 1
(
i ∈ OOBb

)
∑B

b 1
(
i ∈ OOBb

) (1)

where 1
(
i ∈ OOBb

)
equals 1 if cell i is an OOB sample for the b-th

bootstrap and 0 otherwise; the correctness function Tb(i) is given
by 1

(
Yi = fb (Xi)

)
, which evaluates to 1 if the b-th tree correctly

predicts the type of cell i and 0 otherwise. Cells of higher value
are expected to bring greater benefits for distinguishing cell types
when included in the sketch compared to those of lower value.

scValue defines each cell’s data value as its OOB accuracy,
computed solely from the trees in which the cell was excluded
during training. In essence, a cell’s OOB accuracy indicates how

accurately the ensemble of trees (trained on all other cells) pre-
dicts its cell type. Although this evaluation inherently involves
the contributions of other cells, it should be viewed as a strength
rather than a drawback. A high OOB accuracy demonstrates that
even when omitted from a particular tree’s training, the cell’s
expression profile is well represented by the decision boundaries
established by the remaining cells, reflecting its typicality within
its cell type. Moreover, because the prediction is derived from
the ensemble’s collective information, cells with ambiguous or
less characteristic features tend to yield lower OOB accuracies
and, consequently, lower data values. This approach naturally
prioritizes cells that are robustly supported by the overall dataset,
thereby enhancing the quality of subsampling for downstream
machine and deep learning tasks.

Sketch size determination
Sketching is conducted at the cell-type level in a value-weighted
manner to improve cell-type balance in the resulting subset. The
number of cells to be subsampled for cell type m is determined by
considering both the cell type abundance and the standard error

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/3/bbaf279/8162443 by Library of C

ancer Institute (H
ospital), C

hinese Academ
y of M

edical Sciences user on 14 June 2025



4 | Huang et al.

of its data values

Sm = S · Nm · σm∑M
j Nj · σj

(2)

Here, Nm represents the number of cells belonging to type
m in the original dataset; σm is given by σm/

√
Nm, in which σm

denotes the standard deviation of data value for cells of type m.
The denominator normalizes the value-weighted subsample size
across M types. In addition, the largest remainder method [18] is
employed to ensure that the total allocation for all cell types sums
up exactly to S.

The rationale behind value-weighted subsampling is as follows:
rare cell types are often more difficult to learn in a random forest
due to their underrepresentation, while heterogeneous cell types
that contain diverse or complex expression profiles also present
challenges for learning. Both scenarios are typically associated
with larger variability in data values. To address this, Equation
(2) allocates more cells to rare and heterogenous cell types in the
sketch, thereby enhancing the preservation of essential biological
information.

Value-guided cell selection
Once the sketch size Sm for cell type m is determined, value-guided
cell selection is performed. Depending on the number of cell types
present in the original dataset, two cell selection strategies can be
applied.

Full binning (FB): If the dataset contains a relatively small
number of cell types (e.g. 10 types in the PBMC [19] and mBrain
[20] datasets), the FB strategy can be employed to select high-
value cells. For each cell type m with Nm cells, the data value
range [0, 1] is divided into K equal-sized bins (by default, K = 10,
corresponding to intervals of 0.1). Let pkdenote the proportion
of Nm cells that fall into the k-th bin, such that

∑K
k=1pk = 1.

The number of cells selected from each bin is proportional to pk,
ensuring that the subset preserves the original distribution of cells
across bins. Specifically, within the k-th bin, let bin↓

k denote the
set of cells ranked in descending order of their values vi. Bin-wise
selection is then performed by choosing the top

⌊
pkSm

⌋
cells from

bin↓
k to form part of the subsample (denoted Ωm) for cell type m

Ωm = K∪
k=1

{
i ∈ bin↓

k | rank(i) ≤ ⌊
pkSm

⌋}
(3)

This strategy captures cells across the entire data value ranges,
preserving a broad snapshot of variability within each cell type m
variation in value. Combining Ωs for each cell type results in the
final sketching.

Mean-threshold binning (MTB): When the original dataset
includes a large number of cell types (such as 164 types in the
CxG_min dataset [21] or 197 types in the mACA dataset [22]), MTB
can be employed. Unlike FB that uses uniform, equal-sized bins,
MTB focuses on bins above the mean data value for cell type m;
all bins below the mean are merged into a single bin starting from
0. This approach prioritizes cells with above-average values

The rationale for using different binning methods for cell selec-
tion lies in the structure of the dataset. In simpler datasets
with fewer cell types, FB with uniform binning can effectively
capture potential subpopulations within each cell type. In con-
trast, datasets with a large number of cell types tend to exhibit
finer subpopulations or distinct cell states rather than broad
categories. In such cases, focusing on above-mean bins through

MTB helps mitigate the complexity introduced by highly hetero-
geneous labels.

Computational complexity
scValue has O

(
BdN log N

)
computational complexity. Here, we

review the theoretical computational complexities of the six exist-
ing subsampling methods, i.e. Uniform (as implemented in the
Seurat [7] and Scanpy [8] pipelines), GeoSketch [6], Sphetcher
[9], Hopper [10], KH [13], and scSampler [12], as documented in
the respective publications. A summary of these complexities,
alongside that of scValue, is provided in Table 1 for comparison.

Given a large scRNA-seq dataset consisting of N cells and d
features (PCs by default), the sketching objective is to extract S
cells that effectively represent the original dataset. Among the
seven methods evaluated, five include additional parameters or
variables that influence their computational complexity. Specif-
ically, scValue has a parameter B, representing the number of
trees in the random forest, with a default value of100. TreeHopper,
similarly, involves a parameter B, denoting the number of parti-
tions of the original dataset, typically set to 1000. scSampler [12]
also utilizes a partitioning parameter B, which was evaluated in
its original publication with values of 1 (no partitioning), 4, and
16. In our experiments, we set B = 4 to balance computational
cost with sketch quality. Lastly, KH incorporates a parameter D,
which denotes the number of random features sampled from the
original d features.

Implementation
scValue is implemented in Python, with the data value compu-
tation step built upon the RandomForestClassifier class (version
1.5.2) from the scikit-learn library. Parallelization of tree-fitting
is supported to enhance computational efficiency. By default,
scValue uses the top 50 PCs (d = 50) as the latent representation
of cells; however, it also accepts gene expression features or
other low-dimensional embeddings as input. The random forest
is constructed with B = 100 decision trees by default. In the value-
weighted subsampling step, FB is set as the default cell selection
strategy. Alternatively, proportional subsampling can be carried
out instead if the original cell types are highly balanced or when
users prefer to maintain the original cell type proportions.

Evaluation and case studies
In this study, we benchmarked scValue against six established
subsampling methods (Uniform [8], GeoSketch [6], Sphetcher [9],
TreeHopper [10], KH [13], and scSampler [12]) across a com-
prehensive suite of analyses including: four ML/DL-based CTA
tasks, and three case studies on LT, cell-type harmonization, and
(pseudo)bulk RNA-seq Deconv, respectively. Each task/case study
was conducted with a distinct pair of scRNA-seq dataset (Table 1)
and ML/DL model. Moreover, a systematic sketch metric compar-
ison between scValue and its counterparts were performed using
all 16 datasets listed in Table 1. Detailed experimental procedures
are provided in Supplementary Note 1.

Results
Demonstration: scValue balances cell-type
proportions and improves cell-type separation
To illustrate the capacity of scValue to balance cell type propor-
tions while maintaining separation among different cell types,
we tested it on the mTC dataset [23], comprising ∼90 k cells
across four cell types. We used scValue and six existing sketching
methods to subsample 10% of the original dataset (∼9 k cells)
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and then visualized both the full dataset and each subsample
using uniform manifold approximation and projection (UMAP), as
shown in Fig. 1b.

Overall, scValue, Uniform, and GeoSketch produced sketches
that more closely resembled the full distribution compared to
Sphetcher, Hopper, KH, and scSampler. Among the former three,
both scValue and GeoSketch exhibited better coverage of the
relatively rare natural killer cells (pink) by preserving a denser rep-
resentation of this cell type. Notably, however, scValue achieved
clearer separation between T cells (blue) and regulatory T cells
(green) than GeoSketch, indicating that scValue not only cap-
tures rare populations but also maintains improved resolution
between distinct cell types. These observations hence underscore
the ability of scValue to effectively balance cell type proportions
and enhance separation among cell types, with the potential of
benefiting ML/DL tasks.

Evaluation: scValue outperforms existing
sketching methods in machine learning and
deep learning-based cell-type annotation tasks
To assess how well scValue preserves essential information in
sketches for ML/DL-based CTA, we evaluated the method against
its six counterparts on four dataset-model pairs: PBMC with
scANVI [19], mBrain with scPoli [20], CxG_min with CellTypist [21],
mACA with ACTINN [22]. Evaluation involved predicting labels for
both all cell types and the subset of rare cell types. In the simpler
PBMC and mBrain datasets (each with 10 cell types), rare cell types
were defined as those representing less than 10% of the total cells.
In contrast, for the more heterogeneous CxG_min (164 cell types)
and mACA (107 cell types) datasets, the rarity threshold was set
at 0.5% of the total cells.

Each dataset was split into a reference set (for training) and a
full-sized query set (for validation). We then generated sketches
of the reference set at varying fractions (2%–10% of the original
dataset) using the seven subsampling methods. Subsequently, the
trained models were used to infer cell types on the full query
set; and this procedure was repeated ten times to ensure robust
performance estimates. The detailed experimental settings are
provided in Supplementary Note 2.

Figure 2 presents the annotation accuracies in boxplots for
each annotation task and Tables S1–S8 summarize the average
and standard deviation of accuracies for each sketching method
at each subsampling percentage in each dataset-model pair’s
experiment.

For all-CTAs, in PBMC (Fig. 2a), scValue consistently outper-
formed other methods, especially at smaller sketch sizes (2%–4%).
At 10%, scValue reached an average accuracy of 0.8330 compared
to 0.8635 for the full dataset, with less variability than its counter-
parts. In mBrain (Fig. 2b), scValue maintained high and steadily
increasing accuracy across all sketch sizes, beginning with a
significant lead at 2% and closely approaching the full-reference
accuracy of 0.9320. In the more complex CxG_min (Fig. 2c),
although all methods improved with larger sketches, scValue out-
performed the alternatives in all cases; at 10%, it reached 0.5811
versus 0.6847 for the full dataset. Similarly, in mACA (Fig. 2d) with
197 cell types, scValue led at all sketch sizes, achieving 0.5901 at
10% despite the full-reference accuracy being 0.7176.

For rare-CTAs, a similar trend can be observed in the four
datasets (Fig. 2e-h). With only a few exceptions in mBrain (Fig. 2f)
at 4%, 6%, and 8% sketch sizes, scValue consistently outperformed
the six baseline methods. At a 10% sketch level, scValue achieved
rare cell-type accuracies that were closest to or even exceeded
the full dataset results, as seen in PBMC (0.6855 versus 0.6224)
and mBrain (0.7207 versus 0.6896). These findings confirm that

scValue effectively preserved and enhanced the representation
of rare cell populations after downsizing, offering a more
reliable annotation performance than alternative subsampling
approaches.

For datasets with highly heterogeneous labels, such as
CxG_min (164 cell types) and mACA (197 cell types), it is
challenging to effectively capture the label distributions with
small sketch sizes (e.g. 2%–10%). Therefore, increasing the sketch
size is advisable for a better representation of the distributions.
Following this rationale, we conducted an additional experiment
using sketch sizes of 12%–20% on the CxG_min and mACA
datasets while keeping all other experimental settings the same
as those for the 2%–10% range. As presented in Fig. S1 and
Tables S9 and S10, the results indicate that increasing the sketch
size improved accuracy across most subsampling methods;
notably, scValue continued to lead. At a 20% sketch size, scValue
achieved average accuracies of 0.6401 versus 0.6847 for CxG_min
and 0.6511 versus 0.7176 for mACA, yielding considerably smaller
gaps compared to those observed at a 10% sketch size.

Demonstration: scValue-core enhances sketch
quality by mitigating noise and annotation bias
Since noisy data or biased CTAs can impair scValue’s ability to
accurately prioritize cells and generate reliable subsamples, we
have developed a method that first constructs a core sample
set from the original dataset before applying scValue. We call
this approach scValue-core. The method systematically filters
out low-confidence cell type labels using both confidence score
computation and subsequent validation. Each cell is assigned
a confidence score (ranging from 0 to 1) via either an official
or a user-trained CellTypist model. The predicted cell types are
then compared with the original annotations, and only cells with
matching or broadly similar labels are retained (although this
validation step is optional). A user-defined threshold (default 0.5)
is applied to filter out low-confidence cells, thereby constructing
a high-quality core sample set. Finally, scValue subsampling is
performed on this refined dataset to produce a downsized, high-
quality sketch, which is expected to enhance downstream ML/DL
applications when compared to the standard scValue sketch.

To demonstrate the effectiveness of scValue-core, we applied it
to the PBMC dataset using a CellTypist model (Immune_All_High.pkl)
for annotating high-level immune cells from the official repos-
itory. Cells with predictions that did not match their original
annotations were removed, and a core sample set was constructed
using the default confidence score threshold of 0.5. Subsequent
scValue subsampling on this filtered dataset generated sketches
representing 2% to 10% of the original data. As shown in
Fig. 3a and b, these sketches consistently outperformed both
standard scValue and six baseline methods (Uniform, GeoSketch,
Sphetcher, Hopper, KH, and scSampler) across various sketch sizes
in all-cell-type and rare-CTA tasks. Tables S11 and S12 summarize
the mean ± standard deviation accuracies for evaluations on
all cell types as well as rare cell types on the PBMC dataset.
Both scValue-core and standard scValue outperformed the other
subsampling methods, achieving accuracies comparable to or
even exceeding those of the full dataset. Notably, scValue-core,
which leverages the curated core sample set, delivered superior
performance relative to standard scValue; for example, at a 10%
sketch size, scValue-core achieved accuracies of 0.8498 for all
cell types and 0.7162 for rare cell types, compared to 0.8330 and
0.6855, respectively. These results suggest that employing scValue
subsampling on a carefully curated core sample set can further
enhance annotation performance.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/3/bbaf279/8162443 by Library of C

ancer Institute (H
ospital), C

hinese Academ
y of M

edical Sciences user on 14 June 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data


6 | Huang et al.

Figure 2. scValue outperforms existing sketching methods in ML/DL-based CTA tasks. We evaluated scValue against Uniform, GeoSketch, Sphetcher,
Hopper, KH, and scSampler in (a-d) all-cell-type and (e-h) rare-CTA tasks using four previously studied dataset-model pairs: PBMC with variational
autoencoder-based scANVI, mBrain with variational autoencoder-based scPoli, CxG_min with logistic regression-based CellTypist, mACA with neural
network-based ACTINN. For each dataset, sketches of the reference partition were created at varying fractions (2%–10%) and used to train the
corresponding model to annotate the full query partition.
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Figure 3. scValue-core, that leverages the core sample set for subsampling, can further improve the performance for both (a) all-cell-type and (b) rare-
CTA tasks with the PBMC dataset. (c) Cell-type-specific marker gene expressions are plotted to further analyse the quality of the sketches. Here, the top
three markers for CD4+ T cell in the PBMC dataset are visualized as an example.

Cell-type-specific marker gene expressions were analysed to
further evaluate the quality of sketches by various methods.
Specifically, marker genes for the nine cell types (CD4+ T cells,
cytotoxic T cells, natural killer cells, CD14+ monocytes, CD16+
monocytes, B cells, dendritic cells, megakaryocytes, and plasma-
cytoid dendritic cells, with the ‘Unassigned’ label excluded) in
PBMC, were retrieved from the CellMarker 2.0 database [24].

For each cell type, we used Seurat’s FindMarkers function to
identify the top three marker genes. We then generated violin
plots (see Fig. 3c for CD4+ T cell as an example and Fig. S2 for all
cell types) to display the expression levels of these marker genes
across datasets produced by the various subsampling methods,
including our proposed approaches (scValue-core and standard
scValue) as well as six baseline methods. Overall, the expression
levels of marker genes in datasets processed with scValue-core
and scValue were similar to those in the full dataset. This suggests
that our method could preserve key biological signals during
downsizing and that the core sample set system could potentially
correct for biases introduced by low-confidence labels.

Case study: scValue enables improved CellTypist
label transfer learning
To examine how scValue performs when reference and query
data have divergent annotation styles, we conducted a LT learning
experiment using the Gut (428 k cells) [25] and immune (42 k

cells) [26] datasets from the CellTypist tutorial [27]. Following the
tutorial’s workflow, we first reduced the 428 k Gut dataset to 55 k
balanced cells (ensuring each cell type was equally represented).
Because the dataset was already well-balanced, we used pro-
portional subsampling rather than value-weighted subsampling
and then applied scValue to produce a 10% sketch, while the
immune dataset (42 k cells) remained unchanged. We trained a
CellTypist model [24] on each 10% sketch (generated by scValue
and the six baseline subsampling methods) and then transferred
its annotations to selected T-cell populations (‘Activated CD4 T,’
‘Th1,’ ‘Tfh,’ ‘CD8 T,’ ‘cycling gd T,’ ‘Tcm,’ ‘gd T,’ ‘Th17,’ and ‘Treg’)
in the immune query dataset. To evaluate performance, the trans-
ferred annotations were compared against the query dataset’s
original annotations. Figure 4 shows dot plots contrasting these
predictions with the original alignment obtained using the full
reference data in the tutorial.

Several trends can be observed from the plots. Among all
methods, scValue and Uniform yielded LTs that most resembled
the original ones. In addition, scValue not only preserved but
also improved the correct classification of ‘Tfh’ cells, indicating
its strength in retaining subtle yet important features of cell
types. The other five sketching methods showed higher levels of
different assignments:

• GeoSketch had a larger proportion of ‘CD8 T’ cells and ‘Treg’
cells classified as ‘Activated CD4 T’.
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Figure 4. scValue enables improved CellTypist LT learning. In the case study of employing CellTypist to transfer labels from the gut (reference) to the
colon (query) dataset, scValue’s sketch preserved T-cell labels most similar to the full reference and even surpassed the latter in the ‘Tfh’ cell type, as
reflected in the larger fraction of cells being correctly predicted for this type.

• Sphetcher did not predict any ‘Activated CD4 T cells’.
• Hopper inferred the majority of ‘Activated CD4 T’ cells as

other T subtypes.
• KH displayed a noticeable tendency to label ‘Activated CD4 T’

as ‘Activated CD8 T’.
• scSampler classified a large portion of ‘Activated CD4 T’ as

‘CD8 Tmem’, and some ‘CD8 T’ as ‘SELL+ CD4 T’.

Subsampling the reference data naturally led to lower LT prob-
abilities, as visually reflected by more blue bubbles (indicat-
ing reduced confidence) in each sketch’s dot plot. Neverthe-
less, scValue emerged as a top-performing subsampling strat-
egy, preserving enough critical information to sustain accurate
LT.

Case study: scValue facilitates improved label
harmonization with CellHint
To explore how effectively scValue captures complex cell-type
relationships when integrating scRNA-seq data from multiple

sources with divergent annotation styles, we followed the CellHint
tutorial workflow [28] to harmonize T-cell annotations across
four independent studies, collectively comprising 200 k cells in
the Spleen dataset [27]. Each study provides a slightly differ-
ent nomenclature for T-cell subtypes, making robust cross-study
alignment crucial for constructing a standardized cell atlas.

In this experiment, we first generated a 10% sketch of the
Spleen dataset (i.e. ∼20 k cells) using scValue. Notably, because the
original dataset already contained various distinct T-cell labels
from multiple sources, our goal was to preserve these fine-grained
subpopulations in the sketch. We then applied CellHint [28] to
learn hierarchical relationships among the T-cell annotations
from the four studies, using the scValue-derived sketch as input.
For comparative evaluation, the other six sketching methods also
created 10% subsets, which were fed through the same pipeline.
Figure 5 depicts the resulting tree plot of scValue representing
inter-study label relationships, compared to the original tree con-
structed from the full 200 k dataset. Plots for the six baseline
methods are provided in Fig. S3.
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Figure 5. scValue facilitates improved label harmonization with CellHint. In the case study of label harmonization for the multi-study spleen dataset
via CellHint, scValue’s sketch (a) more accurately reproduced inter-study T-cell subtype relationships compared to those obtained with the full data (b).

Of all methods tested, scValue performed best in reproducing
the fine-grained relationships among T-cell subtypes observed in
the full dataset’s tree. This reflects scValue’s ability to maintain
critical cellular diversity in reduced subsets, even under condi-
tions where the nomenclature varies across studies. Other meth-
ods exhibited diverse degrees of different matching compared
to the original tree, including deletion of existing T-cell subtype
relationships and/or introductions of new ones:

• Uniform resulted in a reordering of studies and removed
relationships involving the ‘CD8-positive, alpha-beta memory
T cell’ and ‘T Cell Spleen’.

• GeoSketch related ‘Tnaive/CM CD8’ to ‘T_CD4 naïve’.
• Sphetcher both altered the study order and linked ‘Tnaive/CM

CD8’ to ‘T_CD4 naïve’.
• Hopper merged ‘Trm_Tgd’ and ‘Tgd_CRTAM+’ into ‘T_CD8_gd’.
• KH similarly led to a change of study ordering and related

‘Tnaive/CM CD8’ to ‘T_CD4 naïve’.
• scSampler introduced several additional relationships

including linking ‘Tnaive/CM_CD4_activated’ with ‘T_CD4_

conv’, merging ‘Trm_Tgd’ and ‘Tgd_CRTAM+’ into ‘T_CD8_gd’,
and integrating ‘Trm_gut_CD8’ and ‘Trm/em_CD8’ into
‘T_CD8_activated’.

These inconsistencies likely stem from each method’s differing
priorities in selecting representative cells. Approaches that under-
sample or over-sample particular subpopulations can distort the
underlying biological relationships, particularly in datasets with
nuanced cell-type definitions that vary by study. In contrast,
scValue’s built-in balancing and value-based selection strategies
appear to safeguard these subtle distinctions.

Case study: scValue effectively builds single-cell
ribonucleic acid-sequencing reference for bulk
ribonucleic acid-sequencing deconvolution with
MuSiC
We evaluated scValue for building a single-cell expression refer-
ence for MuSiC [29], which is a reference-based Deconv tool identi-
fied as the top performer in a recent systematic benchmark study
[30]. The experiment used the T&ILC dataset, comprising 216 611
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cells from 12 human donor samples. Specifically, the expression
matrices of cells from two donors (A29 and A31) served as the
full reference dataset, from which sketches were generated using
scValue as well as six baseline methods (Uniform, GeoSketch,
Sphetcher, Hopper, KH, and scSampler). The expression profiles
from the remaining 10 samples (A36, A35, A37, A52, 582C, 621B,
637C, and 640C) were aggregated to construct pseudobulk data
with known ground truth cell type proportions, allowing for direct
evaluation of MuSiC’s accuracy. Both the full dataset and the
generated sketches were then used by MuSiC to infer cell type
proportions from the pseudobulk data.

Following the approach described by Wang et al. [29], we
assessed performance using three metrics: the average Pearson
correlation, average root mean squared error (RMSE), and average
mean absolute error (MAE) between the inferred and true propor-
tions across the 10 samples. As shown in Table 3, scValue achieved
the highest correlation (0.6851), the lowest RMSE (0.0592), and
the lowest MAE (0.0434). Additionally, Fig. S4 illustrates that the
inferred cell type proportions from scValue closely match those
obtained from the full dataset, outperforming the six baseline
methods. These results demonstrate the applicability of scValue
in constructing reliable single-cell references for (pseudo)bulk
tissue cell type Deconv.

Comparison: scValue yields efficient
computation time, best Gini coefficient, and
uniform-like Hausdorff distance
To conclude the evaluations, we benchmarked scValue against the
six other methods using the 16 datasets of varying size (Table 1),
focusing on computation time, Gini coefficient, and Hausdorff
distance. For each dataset, a 10% sketch was generated by each
method. The scatter plots in Fig. 6 illustrate computation time (x-
axis) versus Gini coefficient (y-axis), with bubble size indicating
the sketch’s Hausdorff distance from the full dataset. The detailed
statistics for producing the plots are provided in Table S13. A
major observation is that scValue (shown in pink) typically clus-
tered toward the lower ends of both axes, reflecting its short
runtime and low Gini coefficient (balanced cell-type proportions).
Meanwhile, the moderate bubble size indicates that scValue’s
sketch remains reasonably close to the original data distribution.
It should be noticed that, for the mEmbryo dataset (containing
∼3.2 million cells), Sphetcher and KH did not complete their runs
and thus no sketches were included in the relevant plots; similarly,
for the Fetal dataset (about four million cells), Hopper, Sphetcher,
and KH did not finish running and were therefore excluded from
the results.

From Table 4, which ranks each method by its average perfor-
mance on the three metrics across the datasets, scValue stood
out for its computation time rank of 2.4 ± 0.8, second only to
the simple Uniform approach, and best Gini coefficient rank of
2.1 ± 1.5. The Hausdorff Distance rank of 5.3 ± 1.1 was slightly
lower than Uniform (5.5 ± 1.2) and KH (5.4 ± 1.3), confirming that
scValue’s sketches did not deviate excessively from the original
distribution. These results suggest that scValue strikes a distinct
trade-off: it excels at capturing the full diversity of cell popula-
tions and is computationally efficient, yet it can exhibit a slightly
higher distributional shift compared to alternative methods that
are based on distance-optimization (especially, GeoSketch, Hop-
per, and scSampler). Nevertheless, this shift remains comparable
or better than Uniform’s performance, reinforcing that scValue
offers a robust balance between cell-type representativeness, effi-
ciency, and data fidelity. Finally, Fig. S5 further illustrates how
scValue’s computational time is nearly independent of the sketch

Table 2. Theoretical computational complexities of the seven
sketching methods evaluate in this study

Method Theoretical complexity

scValue O
(
BdN log N

)
with Btrees and d features

Uniform O(1)

Geosketch O
(
dN log N

)
with dfeatures

Hopper O(NS)

O (NS/B) for TreeHopper with B partitions
Sphetcher O

(∑
i

∣∣Li
∣∣) for each iteration until L converges,

where
∣∣Li

∣∣ is the size of the i-th spherical
subset

KH O(dDNS) with d features and D random
features

scSampler O(NS)

O (NS/B) if split by B subsets

size (tested from 2% to 10%) using the Spleen dataset as an
example, which resonates with O

(
BdN log N

)
complexity. This

constant-time characteristic emphasizes the practical scalability
of scValue, which is an important consideration for large-scale
single-cell applications where speed matters.

Regarding the computation time observed in the sketch metric
comparison, scValue’s practical efficiency can be understood as
follows. Since the target sketch size S is usually considerably
larger than log(N) for typical sketching applications in single-
cell analysis [6], it can be inferred from Table 2 that the theo-
retical ranking of computational complexity in ascending order
is: Uniform < GeoSketch < scValue < (Tree)Hopper ≈ scSampler
(with partitioning) < Sphetcher < KH. However, actual computa-
tion time may diverge from this order due to several factors [31],
such as the constant and lower-order terms ignored in Big-O
notation, dataset-specific characteristics, memory management
overhead, and other implementation details. Moreover, as the
random forest used in scValue can be easily parallelized, this
method may achieve faster or comparable runtimes to other
sketching methods (including GeoSketch) in practice, especially
for large datasets.

Discussion
This study introduces scValue, a novel subsampling method
devised for large-scale single-cell transcriptomic data to prioritize
each cell based on its utility for cell-type classification. Rather
than optimizing distance (e.g. GeoSketch, Sphetcher, Hopper,
scSampler) or distribution (e.g. KH), scValue uses a random
forest to compute each cell’s OOB prediction accuracy as its data
value. Subsample sizes per cell type are then determined by both
abundance and variability in these values, allocating more cells
to rare or intricate cell types. Finally, the FB or MTB strategy
can select cells at different value levels, preserving overall data
diversity but still favoring higher-value cells.

We systematically compared scValue with six established sub-
sampling methods (Uniform, GeoSketch, Sphetcher, Hopper, KH,
and scSampler) across multiple ML/DL tasks. In CTA tasks (PBMC
with scANVI, mBrain with scPoli, CxG_min with CellTypist, and
mACA with ACTINN), scValue achieved consistently high accura-
cies, stable runs, and progressive performance gains with larger
sketch sizes, approaching results obtained with the full dataset.
In three case studies, scValue best preserved T-cell identities
when transferring labels from Gut to Colon with CellTypist, most
accurately reproduced T-cell subtype relationships in the Spleen
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Figure 6. scValue yields efficient computation time, the best Gini coefficient, and uniform-like Hausdorff distance. We evaluated scValue against its
counterparts in terms of three sketch quality metrics across 16 datasets containing between 31 000 and 4 million cells, spanning four to 197 cell types
and including samples from more than 10 tissues across four species.

Table 3. Summary of evaluation metrics for MuSiC deconvolution by respectively using full data and the sketches by scValue and the
six baseline methods as references.

Method Correlation RMSE MAE

Full data 0.6478 0.0702 0.0510
scValue 0.6851 0.0592 0.0434
Uniform 0.6629 0.0645 0.0466
GeoSketch 0.5763 0.0654 0.0490
Sphetcher 0.6591 0.0651 0.0485
Hopper 0.6348 0.0750 0.0543
KH 0.5957 0.0674 0.0478
scSampler 0.6531 0.0738 0.0512

Note: bold value in the Correlation column denotes the highest (best) values, while bold values in the RMSE and MAE columns denote the lowest (best) values.
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Table 4. Rankings of each subsampling method based on its average performance on the three metrics across the 16 datasets

Method Computation time rank Gini coefficient rank Hausdorff distance rank

scValue 2.4 ± 0.8 2.1 ± 1.5 5.3 ± 1.1
Uniform 1.0 ± 0.0 5.4 ± 1.6 5.5 ± 1.2
GeoSketch 3.9 ± 0.5 2.6 ± 1.4 2.7 ± 0.6
Sphetcher 6.1 ± 1.0 5.1 ± 2.3 4.7 ± 1.6
Hopper 3.1 ± 0.9 4.0 ± 1.5 1.3 ± 0.5
KH 6.5 ± 0.8 5.0 ± 1.3 5.4 ± 1.3
scSampler 4.9 ± 0.9 3.7 ± 1.7 2.6 ± 1.9

dataset with CellHint, and achieved best (pseudo)bulk Deconv per-
formance with MuSiC on the T&ILC dataset. Finally, using 16 large
scRNA-seq datasets, scValue was second fastest (behind Uniform),
produced well-balanced sketches (lowest Gini coefficient), and
maintained a Hausdorff distance similar to Uniform, indicating
small deviation from the original data.

From a theoretical perspective, scValue’s subsampling strategy,
which maintains balanced cell-type proportions and emphasizes
highly informative cells, can benefit several types of ML/DL algo-
rithms. Deep learning models, such as the neural network-based
ACTINN model and variational autoencoder-based approaches
like scANVI and scPoli (benchmarked in our study), are particu-
larly sensitive to class imbalance. By providing a representative
and balanced subsample, scValue ensures that rare cell types are
adequately represented, which leads to improved model conver-
gence and reduced bias. Furthermore, models that utilize mini-
batch stochastic gradient descent (SGD), as exemplified by the
logistic regression-based CellTypist model, can benefit from train-
ing data that accurately reflects the true underlying distribution.
With scValue, each mini-batch is more likely to contain a diverse
and balanced representation of cell types, thereby enhancing
learning stability and generalization. In addition, emerging frame-
works such as graph neural networks and transformer-based
models for single-cell data analysis can benefit from scValue’s
ability to capture subtle biological variability. By retaining rare or
nuanced subpopulations, scValue preserves the relational struc-
ture between cells that is essential for these methods. Moreover,
the use of OOB estimates to assess cell-level informativeness con-
tributes to selecting cells that support stable decision boundaries.
This advantage is particularly relevant for ensemble methods
like random forests and for support vector machines (SVMs),
where balanced training data improves classification margins and
mitigates overfitting.

Although the evaluation of this study primarily focuses
on CTA, scValue is broadly applicable to other ML/DL tasks.
For example, in our cell-type harmonization experiment using
CellHint on the human Spleen dataset, scValue preserved fine-
grained relationships among T-cell subtypes across multiple
studies and enabled more robust cross-study comparisons despite
variations in annotation styles. Similarly, our bulk RNA-seq
Deconv experiment using MuSiC showed that the subsampled
single-cell reference generated by scValue closely resembled
the full dataset in accurately reconstructing known cell-type
proportions in pseudobulk samples. These findings underscore
scValue’s effectiveness in maintaining biological fidelity and
enhancing downstream predictive performance, even when
applied to tasks beyond direct CTA. Furthermore, the data
valuation framework underlying scValue can be extended to
optimize training data for general predictive models, particularly
in high-dimensional and imbalanced settings. By prioritizing

high-value data points, scValue reduces redundancy and concen-
trates on the most informative cells, potentially leading to more
accurate and efficient model training in applications such as
single-cell drug response prediction, disease state classification,
and patient stratification. These extended applications can
potentially demonstrate the versatility of scValue and reinforce
its theoretical basis by linking cell importance (as estimated by
OOB accuracy in a random forest) to robust performance across
various ML/DL tasks.

scValue can also sketch scRNA-seq datasets from multiple
sources. The choice to integrate before or after running the
method depends on the magnitude of batch effects and the
biological distinctiveness of each dataset. If the datasets are
well-integrated with minimal batch effects, merging them into
a single dataset before applying scValue is advantageous, as it
produces a subsample that accurately reflects the global cellular
landscape. This strategy is particularly effective for analyses that
require a comprehensive view, such as identifying shared cell
populations or constructing integrated cell atlases. Conversely,
if the datasets exhibit strong batch effects or contain unique
biological characteristics, it is preferable to run scValue on each
dataset independently. This approach preserves source-specific
features, such as rare cell types or subtle transcriptomic signals,
that might otherwise be lost during early integration. After
obtaining representative sketches from each dataset, established
integration methods can be applied to the combined subsamples,
thereby retaining critical distinctions while reducing overall data
size to a manageable scale.

Despite the various strengths, scValue’s reliance on accurate
OOB estimates from the random forest makes it sensitive to noise
and redundant cells in the input data, which can lead to inac-
curate subsamples. To mitigate this issue, we have implemented
scValue-core, an approach that constructs a core sample set from
the original data using a systematic filtering process. In scValue-
core, each cell is assigned a confidence score using an estab-
lished CellTypist model, its predicted cell type is validated against
the original annotation, and cells scoring below a user-defined
threshold are filtered out. By retaining only high-confidence cells
for subsequent subsampling, scValue-core effectively reduces the
impact of noise and bias, thereby improving the quality of the
final sketch. It is also recommended to conduct rigorous quality
control and preprocessing before applying scValue. For instance,
removing duplicate or near-duplicate cells, applying batch correc-
tion to minimize technical variability, and using data imputation
methods to recover missing or noisy expression values can all help
ensure a cleaner input dataset and, consequently, more reliable
OOB estimates. Furthermore, during the data value computation
step of scValue, tuning random forest hyperparameters (such
as increasing the number of trees and adjusting the maximum
depth) may further stabilize OOB estimates in noisy conditions.
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We also propose that future versions of scValue could integrate
additional selection metrics, such as local density or variability
measures, alongside OOB accuracy to provide a more comprehen-
sive evaluation of cell importance and further mitigate the effects
of noise and redundancy.

Furthermore, scValue may also introduce bias by favoring cells
with stronger, more ‘typical’ signals. This bias can potentially limit
the diversity captured in the subsample in two important ways.
First, it may lead to an over-emphasis on cell subpopulations that
are inherently easier to classify due to their distinct markers,
resulting in a disproportionate representation of these cells while
under-sampling rare or ambiguous groups. Second, by focusing on
cells that perform well in classification, the approach might com-
promise the fidelity of the original expression distribution, which
is crucial for analyses such as differential expression and gene
regulatory inference, where subtle heterogeneity is important. To
mitigate these potential biases, we propose several strategies. Rig-
orous quality control of the input data is essential because noisy
or duplicate cells can inflate OOB estimates, thereby distorting
the ranking of cells. In our method, the FB strategy divides the
entire [0, 1] data value range into equal intervals, which ensures
that even cells with lower OOB values are included in the final
subsample, preserving a broader spectrum of cellular variability.
Additionally, the scValue-core approach constructs a refined core
sample set by first assigning a confidence score to each cell
based on predictions from an established CellTypist model and
then validating these scores against original annotations; only
cells that meet or exceed a pre-defined threshold are retained
for subsampling. Finally, incorporating additional metrics such
as local density and variability alongside OOB accuracy allows
for a more nuanced assessment of each cell’s annotation quality,
ensuring that sparsely populated or outlier regions are adequately
represented. Together, these strategies can help preserve both the
diversity of cell types and the fidelity of the original data distri-
bution, thereby enhancing the generalizability and robustness of
downstream ML/DL tasks.

The subsampling process of scValue can attenuate subtle
differences in cell-to-cell variability, which in turn may hinder
analyses that demand an accurate reflection of the original
data distribution, such as differential expression analysis and
gene regulatory inference, where even small shifts in expression
levels are crucial. To alleviate this problem, the scValue Python
package offers an option for proportional subsampling (by
setting prop_sampling to true) that more faithfully preserves the
original distribution. However, scValue’s focus on high-value cells
is designed to boost classifier accuracy rather than replicate
the complete transcriptomic distribution. As a consequence,
statistical methods that require comprehensive data, like
DESeq2 [32] for differential expression analysis or weighted gene
correlation network analysis (WGCNA) [33] for co-expression
network construction, may be adversely affected. These methods
depend on precise variance estimates, accurate gene-level
distributions, and even subtle expression differences, all of
which can be diluted when low-abundance transcripts and fine
expression gradients are underrepresented. For analyses that are
sensitive to the full range of expression variability, it is advisable
either to work with the full dataset or to adopt alternative
subsampling strategies, such as geometry-based approaches
like GeoSketch [6], which are better suited to maintaining the
dataset’s fine-grained distributional characteristics. In all cases,
validating findings from subsampled data against those from
the complete dataset is highly recommended to ensure robust
conclusions.

A general caveat in sketching for ML/DL tasks is that, after
subsampling, the number of cells may become comparable to or
even less than the number of genes, exacerbating dimensionality
issues [34]. It remains critical to select an appropriate number
of HVGs or to employ suitably designed model architectures to
mitigate the curse of dimensionality.

To make a final point, scValue can be envisioned as a gen-
eral data valuation and subsampling framework for single-cell
data. Although the current method focuses on cell-type labels,
future extensions could incorporate other meta-information, e.g.
developmental timing, disease status, tissue source, and species,
when utilizing such information to build predictive models at
scale. Besides, subsampling may be reframed as removing low-
value cells to identify a minimal dataset yielding near-optimal
predictive performance. Such a ‘minimal-viable sketch’ concept
could be particularly valuable for studies constrained by comput-
ing resources but aiming to preserve salient biological signals in
ML/DL applications.

Key Points

• Value-based subsampling of large single-cell ribonucleic
acid-sequencing (scRNA-seq) data tied to classification
utility: scValue introduces a novel ‘value-based’ strategy
that leverages out-of-bag estimates from a random for-
est to quantify each cell’s importance for distinguishing
its type. By linking subsampling directly to classification
performance, scValue prioritizes the most informative
cells for efficient downstream machine learning and
deep learning (ML/DL) tasks.

• Balanced yet biologically rich sketches: Through value-
guided allocation, scValue ensures that rare or com-
plex cell types are proportionally represented with more
top-valued cells, thereby preserving essential biological
information.

• Consistently high ML/DL accuracy: In benchmark-
ing tasks spanning cell-type annotation, cross-dataset
label transfer, label harmonization, and bulk RNA-seq
deconvolution, scValue outperforms (or occasionally
matches) existing subsampling methods, maintaining
model accuracy close to that achieved with full datasets.

• Efficiency and scalability: scValue operates efficiently
on large-scale scRNA-seq datasets (ranging from tens
of thousands to millions of cells), producing balanced
sketches with near-uniform data distributions.

Acknowledgements
We thank the high-throughput sequencing and high-performance
computing platform of the Institute of Systems Medicine for
technical support.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.

Conflict of interest
None declared.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/3/bbaf279/8162443 by Library of C

ancer Institute (H
ospital), C

hinese Academ
y of M

edical Sciences user on 14 June 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf279#supplementary-data


14 | Huang et al.

Funding
This work has been supported by National Natural Science
Foundation of China (32300560); CAMS Innovation Fund for
Medical Sciences (CIFMS) [2021-I2M-1-061, 2022-I2M-2-004,
2023-I2M-2-005]; Non-profit Central Research Institute Fund of
Chinese Academy of Medical Sciences [2022-RC416–01]; NCTIB
Fund for R&D Platform for Cell and Gene Therapy, the Suzhou
Municipal Key Laboratory [SZS2022005]; the Special Research
Fund for Central Universities, Peking Union Medical College
(3332024089). Chinese Academy of Medical Sciences & Peking
Union Medical College, Union Medical College Young Scholar
Support Program, No. 2023086 and 2023088; China Postdoctoral
Science Foundation, the Postdoctoral Fellowship Program (Grade
B), Grant No. GZB20230084.

Data availability
PBMC is accessible in the Matrix Market format from https://
portals.broadinstitute.org/single_cell/study/SCP424/single-cell-
comparisonpbmc-data.

mBrain is acquired by downloading the mouse_brain_normaliz
ed.h5ad file from the dataset directory at https://github.com/
theislab/scArches-reproducibility.

CxG_min is obtained from https://github.com/theislab/scTab/
tree/devel, where the minimal subset of the training and test data
were used in our study.

mTC is available under ‘Major cell cluster: T cells’ at https://
cellxgene.cziscience.com/collections/45d5d2c3-bc28-4814-aed6-0
bb6f0e11c82.

cMTG is collected under ‘Chimpanzee: Great apes study’ from
https://cellxgene.cziscience.com/collections/4dca242c-d302-4
dba-a68f-4c61e7bad553.

PAC is obtained under ‘Dissection: Primary auditory cortex(A1)’
from https://cellxgene.cziscience.com/collections/d17249d2-0e6
e-4500-abb8-e6c93fa1ac6f.

gMTG is downloaded under ‘Gorilla: Great apes study’ from
https://cellxgene.cziscience.com/collections/4dca242c-d302-4
dba-a68f-4c61e7bad553.

Liver is available under ‘All cells from human liver dataset’ at
https://cellxgene.cziscience.com/collections/74e10dc4-cbb2-4605-
a189-8a1cd8e44d8c.

GSCL is sourced under ‘Human Somatic Cell Lineage’ from
https://cellxgene.cziscience.com/collections/661a402a-2a5a-4
c71-9b05-b346c57bc451.

Spleen is downloaded from https://celltypist.cog.sanger.ac.uk/
Resources/Organ_atlas/Spleen/Spleen.h5ad.

T&ILC is collected under ‘T & innate lymphoid cells’ from
https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454
e-a0ce-998ec40223d3.

mACA is sourced from https://figshare.com/articles/dataset/
Processed_files_to_use_with_scanpy_/8273102/3; we used the
tabula-muris-senis-bbknn-processed-official-annotations.h5ad
file (the Version 3 atlas).

Gut is obtained from https://cellgeni.cog.sanger.ac.uk/gutcellatlas/
Full_obj_raw_counts_nosoupx.h5ad.

mCNS is collected under ‘Major cell cluster: CNS neurons’
from https://cellxgene.cziscience.com/collections/45d5d2c3-
bc28-4814-aed6-0bb6f0e11c82.

mEmbryo is available under ‘Major cell cluster: Mesoderm’ at
https://cellxgene.cziscience.com/collections/45d5d2c3-bc28-4814-
aed6-0bb6f0e11c82.

Fetal is sourced under ‘Survey of human embryonic development’
from https://cellxgene.cziscience.com/collections/c114c20f-1
ef4-49a5-9c2e-d965787fb90c.
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